Extramammary Paget’s disease (EMPD) is an intra-epidermal adenocarcinoma. Till now, the mechanisms underlying the pathogenesis of scrotal EMPD is poorly known. This present study aims to explore the knowledge of molecular mechanism of scrotal EMPD by identifying the hub genes and candidate drugs using integrated bioinformatics approaches. Firstly, the microarray datasets (GSE117285) were downloaded from the GEO database and then analyzed using GEO2R in order to obtain differentially expressed genes (DEGs). Moreover, hub genes were identified on the basis of their degree of connectivity using Cytohubba plugin of cytoscape tool. Finally, GEPIA and DGIdb were used for the survival analysis and selection of therapeutic candidates, respectively. A total of 786 DEGs were identified, of which 10 genes were considered as hub genes on the basis of the highest degree of connectivity. After the survival analysis of ten hub genes, a total of 5 genes were found to be altered in EMPD patients. Furthermore, 14 drugs of CHEK1, CCNA2, and CDK1 were found to have therapeutic potential against EMPD. This study updates the information and yields a new perspective in the context of understanding the pathogenesis of EMPD. In future, hub genes and candidate drugs might be capable of improving the personalized detection and therapies for EMPD.
Identification of genetic alterations in extramammary Paget disease using whole exome analysis
Exome analysis revealed recurrent somatic mutations in several genes, including TP53, PIK3CA, and ERBB2. We identified additional candidate exons by searching the COSMIC database for exons that are frequently mutated in other adenocarcinomas. We obtained 19 exons in 12 genes as candidate exons, and performed target amplicon sequencing in samples obtained from EMPD patients. New somatic mutations in the TP53 gene were identified in six EMPD patients. Single nucleotide polymorphism analysis revealed multiple chromosomal alterations in three EMPD specimens, and two specimens exhibited amplification of chromosome 12p13 and losses of 3p21–24, 7q22 and 13q12–21.
Methylation and expression analysis of mismatch repair genes in extramammary Paget's disease
Extramammary Paget's disease (EMPD) is a rare skin cancer with relative high frequencies of germline and somatic mismatch repair (MMR) genes mutations. However, the methylation and expression of these genes have not been validated in EMPD.
This study aims to confirm the methylation and expression of MMR genes in EMPD.